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Many of the photgraphs
of Old Fine Hall are
from the collection of
Jay Goldman:

http://www.math.sunysb.edu/~tony/album/finehall0.html







Papakryiakopoulos was a daily figure in the Princeton
Common Room
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He would often have the newspaper up and | recall
it was a Greek newspaper.




Not Papa back there, but
this gives a feel of the
room.
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Here is a shot of
Fox and Hale Trotter
In conversation.




| entered Princeton as a graduate student in 1966.

Eventually, my advisor
was William Browder.

My interests were in the interaction of low dimensional
and high dimensional topology, and | learned as much knot
theory as | could from Fox and worked in his small seminar

where we reported on classic papers.




(A recent picture of
Deborah Goldsmith)

Deborah Goldsmith was a student of Fox and we worked
together in that seminar.

Fox was very good at talking with
students.

We were shy about approaching
Papakriakopoulos.




But at some point, | think it was in 1969, Papa invited
Deborah and myself to dinner.

We joined him in a Princeton restaurant and he talked
about coming to the USA and working in Princeton.
He encourged us to work hard at our problems.
And he said
‘| know you have to publish many papers.

It is important for you to do that. It is not so necessary
for me any more.

Looking back on his statement it has many
meanings. Young people need to publish, but also he
had accomplished his main thoerems and had the
freedom to work fully on the Poincare Conjecture.




Meeting Papa made a lasting impression of
his honesty and dedication in working on
hard mathematical problems.

Old and new points of view recombined in
low-dimensional topology in the years after that.
The rest of this talk is intended to give an impression
about this change.

One thing that does not change is the ever-present
possibility that new techniques will solve the problems
that seemed so challenging in an older framework.




Changing Viewpoints
Three Dimensional Topology and Natural Science




Knotted DNA - Electron Micrograph, Protein
Coated DNA Molecule







DNA Knotting and Recombination
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DNA is a Self-Replicating Form

SOOOOTK A DNA =< W‘C >

l replication loops
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IC >= |... AATCTTATCCATGCGC... > .
<W|+FE —<W|C>=DNA
E+|C>—<W|C>=DNA

<W|C >—<W|+E+|C>=<W|C ><W|C >

Self Replication Schematic
DNA = <Watson|Crick>

E = Environment




Simplest Replication
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Topological Replication
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Temperley Lieb Algebra
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The DNA nebula
is an 80 light year
long formation
lying near the
enormous black hole
at the center of our
Milky VVay galaxy.

http://news.nationalgeographic.com/news/2006/03/0317_060317_dna_nebula.html|




Is the Geometric Universe
a Poincare Dodecahedral Space?

retu rn/

A franco-american team of cosmologists [1] led by J.-P. Luminet, of the Laboratoire Univers et Théories (LUTH) at the Paris
Observatory, has proposed an explanation for a surprising detail observed in the Cosmic Microwave Background (CMB) recently
mapped by the NASA satellite WMAP. According to the team, who published their study in the 9 October 2003 issue of Nature, an
intriguing discrepancy in the temperature fluctuations in the afterglow of the big bang can be explained by a very specific global
shape of space (a "topology"). The universe could be wrapped around, a little bit like a "soccer ball", the volume of which would
represent only 80% of the observable universe! (figure 1) According to the leading cosmologist George Ellis, from Cape Town
University (South Africa), who comments on this work in the "News & Views" section of the same issue: "If confirmed, it is a

major discovery about the nature of the universe".




The Poincare Dodecahedral space is
obtained by identifying opposite
sides of a dodedahedron with
a twist.

The resulting space, if you were inside it,
would be something like the next slide.
Whenever you crossed a pentagonal face,
you would find yourself back in
the Dodecahedron.







What Does This Have
to do with Knot Theory!?

exit

The dodecahedral Space M has 4
Axes of Symmetry: _

five-fold, three-fold and two-fold. 74

The dodecahedral space M is the
5-fold cyclic branched covering
of the three-sphere, branched along the
trefoil knot.

CK
M =Variety(x"2 + yA3 + z/\5)
Intersected with SAS in CA3.




So perhaps the trefoil knot is the
key to the universe.




Knotted Vortices

Creation and Dynamics of Knotted Vortices

Dustin Kleckner! & William T. M. Irvine!

1James Franck Institute, Department of Physics, The University of Chicago, Chicago, Illi

60637, USA




micro-bubbles

FIG. 1. The creation of vortices with designed shape and topology. a, The conventional method for generating a vortex ring,
in which a burst of fluid is forced through an orifice. b, A vortex ring in air visualized with smoke. ¢, A vortex ring in water
traced by a line of ultra-fine gas bubbles, which show finer core details than smoke or dye. d-e, A vortex ring can alternatively
be generated as the starting vortex of a suddenly accelerated, specially designed wing. For a wing with the trailing edge
angled inward, the starting vortex moves in the opposite of the direction of wing motion f, The starting vortex is a result of
conservation of circulation — the bound circulation around a wing is balanced by the counter-rotating starting vortex. g, A
rendering of a wing tied into a knot, used to generate a knotted vortex, shown in h.













Lord Kelvin’s Vortex Atoms

Idea of knotted strings as fundamental constituents

of matter is old

Lord Kelvin and the
1867 string revolution:

atoms are knotted tubes of aether
- topological stability of knots = stability of matter

- variety of knots = variety of chemical elements

For decades considered as the theory of fundamental Matter

Maxwell: Kelvin's theory satisfies more of the
conditions than any atom hitherto

considered




Original drawing by Leadbeater

From the same period as Kelvin, the “vortex
atom’’ of the visionaries Besant and Leadbeater.




The Dirac String Trick




Quaternion Demonstrator
i = jj = kk = ijk = -1

kj = -i
ik = -
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Figure 1 - A knot diagram.
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Figure 2 - The Reidemeister Moves.




Graphical Reidemeister Moves and the
Electrical Analogy

Reidemeister Move Graphical Move
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d Aa= a

(ab)b = a

(ab)b
= - DG
(ab)c = (ac)(bc)
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I now propose to explain how plaitwork is set out,
and the method of making breaks in it. When it is
required to fill in a rectangular panel with a plait the
four sides of the panel are divided up into equal parts
(except at the ends, where half a
division is left), and the points
thus found are joined, so as to
form a network of diagonal lines.
The plait is then drawn over these
lines, in the manner shown on
the accompanying diagram. The
setting-out lines ought really to
be double so as to define the
width of the band composing
the piait, but they are drawn
single on the diagram in order A
to simplify the explanation. ‘

If now we desire to make a
break in the plait any two of the
cords are cut asunder at the point
where they cross each other, leaving four loose ends
A, B, C,D. To make a break the loose ends are joined
together in pairs. This can be done in two ways only:
(1) A can be joined to C and D to B, forming a vertical

/\AD/\{\?/ N4
C

v =

Regular plaitwork without
any break

epee’ D
/ B :. 2, C ,v**. B
Method of making breaks in plaitwork
break ; or (2) A can be joined to D and C to B, forming

a horizontal break. The decorative effect of the plait is
thus entirely altered by running two of the meshes







The Bracket Polynomial

(giving a state summation model for the Jones polynomial)
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Getting Invariance under all Reidemeister Moves
fK(A) = (AR (-w(K))<K>(A)

w(K) = the sum of the crossing signs of K

Then fK(A) is invariant under all three
Reidemeister moves.







<op>ma<oo >+(A-l<)@ )
= A(-A3) + A7 (-AT

<@_?.> < )+4 (8 )

= A(—-A* - A7) + A7 (-A7?)?
(T) =—-A> - A"+ 477
w(T) = 3 (independent of the choice of orientation
since T is a knot)

s L = (AT
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Expressing the Bracket as a Trace of a
representation of the Artin Braid Group to the
Temperley Lieb Algebra.

rep

< > TR (loop count)

\4
Z[A, 1/A]

<Closure(b)> = TR(rep(b))




Since the 1980’s it has been conjectured
that f(K)(A) = | if and only if K is the unknot.

We conjecture that that the Jones polynomial detects
the unknot.

In the late 1990’s Mikhail Khovanov found an
astonishing generalization of the bracket polynomial model
of the Jones polynomial, replacing the polynomial by a
homology theory whose graded Euler characteristic
returned the polynomial.




In 2010 Kronheimer and Morwka proved
that Khovanov Homology detects the
unknot.

Their proof uses techniques from gauge
theory and is related to mathematical
physics.

We still do not know if
the Jones polynomial
detects the unknot.




Partition Functions in Statistical Mechanics

Z; = Ze—E(o)’
g

where o runs over all “states” of the lattice G (we will let G be a planar graph) and
E (o) is the energy of the given state. In the Potts model the energy has the form
1
E(o) = — ). 8(0,0),
kT Gy
where (i, j) denotes an edge of G with vertices i, j and o; and ¢; are the state’s
assignments to these vertices. We assume that each vertex can be freely assigned one

of g values, and that a state o is such an assignment. In this formula 6 is the
Kronecker delta

(1 ifa=0b
S(a’b)_{o otherwise

and T is the temperature of the system, while k is a constant (Boltzman’s constant).




Knots and the Potts Model

PROPOSITION 6.3. For

1
E(o) = — X 8(o;,0)
kT (i)
and q local states, let
v=e WK 1,

Then the partition function is the dichromatic polynomial in q and v:
Ze—E(a) = ZG(q’ U)'
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The dichromatic polynomial rewrites in bracket
formalism, expressing the Potts model in terms of
knot diagrames.

272 G vl
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The Potts Model

The Potts Model.

In this model we are concerned with calculating a partition function associated
with a planar graph G. In general for a graph G with vertices ¢,7,... and edges

(1,7) a partition function has the form Zg = S e~ E(S)/*T where S runs over
S

states of G, E(S) is the energy of the state S, k is Boltzmann’s constant and T

1s the temperature.




In the Potts model, the states involve choices of ¢ values (1,2,3,... ,¢q say)
for each vertex of the graph G. Thus if G has N vertices, then there are q" states.
The q values could be spins of particles at sites in a lattice, types of metals in an
alloy, and so on. The choice of spins (we’ll call 1,... ,q the spins) at the vertices

is free, and the energy of a state S with spin S; at vertex : is taken to be given by

E(S) =) &5i,5;)-
(i,5)
Here we sum over all edges in the graph. And (z,y) 1s the Kronecker delta:

N _J1 ifzr=y
‘5—(“’)“{0 if:c;éy}'




. Zg

K 65:,5;)
e () (K = -1/kT)

H  K5(5i,5;)

(1,7)
H(l + v6(S;, S5))
S (s,1)

where v = ¢

Zg =

|
(7] 7] «[]

K _1

(i.e. ef5(=¥) =14 v8(z,y)).




Zg =Y [](+v8si,5)
S (4,4)
Dichromatic Graph Polynomial
Z( So—el )=7( po & )+vi( ek )

Z(s U H) = qZ(H).

Translating to the Shaded Medial Graph:

() (B € +()
(ii) 2 (@ UX) =qZ (X ) Here @ stands for any connected shaded

region, and | | denotes disjoint union.
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Since W satisfies

"B -(BE) o (g )

W(ou ;() = ¢'*W(K).

(Note the extra component is not shaded!) We can write the

W-Axioms (The Potts Bracket).

1. Let K be any knot or link diagram. Then W(K) € Z[¢*/%,q71/%,v] is a
well-defined function of ¢ and v.

BB (X )

(> ) =@row(DC)+w( X))

3. w(o U K) = ¢'/*W(K)

4. W( O )quﬂ.




Z(K) = ¢"1?W(K)

This translates the Potts model into
a version of the bracket calculation on
the associated alternating link diagram

to a planar graph.

The relationship of the Potts Model
with the Temperley Lieb algebra
becomes transparent with this
point of view.




Exercise: Calculate the Potts model
using the graph and using the link.




Critical Temperature

in the anti-ferromagnetic case of a large rectangular lattice one expects the critical
point to occur when there is a symmetry between the partition function on the
latticé and the dual lattice. In the bracket reformulation of the Potts model this
corresponds to having W(X) = W(X) and this occurs when ¢~ (1/2)y = 1,

Hence the critical temperature occurs (conjecturally) at

/KT _ 1 = NG

or
1

T k(143

T




MANY QUESTIONS
About the relationship of
Knot Theory and the Potts Model
and
Statistical Mechanics










d(s) = Z 0r(s)

The boundary is a sum of partial differentials
corresponding to resmoothings on the states.

AX)=X®@Xand A(1) =1 X + X ® 1.




Cobordism Category

=
I

Figure 21 — The Frobenius Algebra Conditions
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Categorification

Khovanov constructs a homology theory
that generalizes the bracket polynomial,
and such that the Jones polynomial
is the graded Euler characteristic
of this homology theory.




Original drawing by Leadbeater

From the same period as Kelvin, the “vortex
atom’’ of the visionaries Besant and Leadbeater.




The DNA nebula
is an 80 light year
long formation
lying near the
enormous black hole
at the center of our
Milky VVay galaxy.

http://news.nationalgeographic.com/news/2006/03/0317_060317_dna_nebula.html|




Is the Geometric Universe
a Poincare Dodecahedral Space!?!

retu rn/

A franco-american team of cosmologists [1] led by J.-P. Luminet, of the Laboratoire Univers et Théories (LUTH) at the Paris
Observatory, has proposed an explanation for a surprising detail observed in the Cosmic Microwave Background (CMB) recently
mapped by the NASA satellite WMAP. According to the team, who published their study in the 9 October 2003 issue of Nature, an
intriguing discrepancy in the temperature fluctuations in the afterglow of the big bang can be explained by a very specific global
shape of space (a "topology"). The universe could be wrapped around, a little bit like a "soccer ball", the volume of which would
represent only 80% of the observable universe! (figure 1) According to the leading cosmologist George Ellis, from Cape Town
University (South Africa), who comments on this work in the "News & Views" section of the same issue: "If confirmed, it is a

major discovery about the nature of the universe".




The Poincare Dodecahedral space is
obtained by identifying opposite
sides of a dodedahedron with
a twist.

The resulting space, if you were inside it,
would be something like the next slide.
Whenever you crossed a pentagonal face,
you would find yourself back in
the Dodecahedron.




What Does This Have
to do with Knot Theory!?

The Dodecahedral Space has
Axes of Symmetry: rehrs
five-fold, three-fold and two-fold.

If you identify points that are symmetrically
placed with respect to the five-fold
symmetry axis, the space folds up to become
a three-dimensional sphere, and
the axis becomes a trefoil knot in that sphere!

We say that the Dodecahedral space is the
5-fold cyclic branched covering
of the Three-Sphere, branched along the
trefoil knot.




So perhaps the trefoil knot is the
key to the universe.




Is the Universe Knotted!?




Are elementary particles knotted quantized flux?

PHYSICAL REVIEW D VOLUME 6, NUMBER 2 15 JULY 1972

Flux Quantization and Particle Physics

Herbert Jehle
Physics Department, George Washington University, Washington, D. C. 20006*

(Received 27 September 1971; revised manuscript received 27 December 1971)

Quantized flux has provided an interesting model for muons and for electrons: One closed
flux loop of the form of a magnetic dipole field line is assumed to adopt alternative forms
which are superposed with complex probability amplitudes to define the magnetic field of a
source lepton. The spinning of that loop with an angular velocity equal to the Zitterbewegung
frequency 2mc?/%# implies an electric Coulomb field, (negative) positive, depending on (anti)
parallelism of magnetic moment and spin. The model implies CP invariance. A quark may
be represented by a quantized flux loop if interlinked with another loop in the case of a me-
son, with two other loops in the case of a baryon. Because of the link, their spinning is very
different from that of a single loop (lepton). The concept of a single quark does not exist ac-
cordingly, and it is seen that a baryon with a symmetric spin-isospin function in the SU(2)

x SU(3) quark representation might not violate the Pauli principle because the wave function
representing the relative position of linked loops may be chosen antisymmetric. Weak inter-
actions may be understood to occur when the flux loops involved in the interaction have to
cross over themselves or over each other. Strangeness is readily interpreted in terms of
the trefoil character of a A quark: Strangeness-violating interactions imply crossing of flux
lines and are thus weak and parity-nonconserving. AS=AQ is favored in such interactions.
Intrinsic symmetries may be interpreted in terms of topology of linked loops. Sections I

and II give a short résumé of the 1971 paper.




CHLD)

FIG. 2. A trefoil representing a neutrino loop which,
like a coasting three-bladed propeller, moves in a heli-
cal spinning motion in the direction of the spin axis. In
this and in subsequent figures, flux loops are drawn as
double lines merely to better visualize the form of the
loops. The loops are singular lines, the alternative
forms of which define fibration of space. The question
of orientation of the magnetic flux is still open; a neu-
trino might even be a superposition, not only of different
loopforms, but also of both signatures of magnetic flux
orientation. The difference between electron and muon
neutrino is discussed in Sec. IV and in Appendix II of
Ref. 1; the distinction is in regard to phase-related
versus random-phased probability amplitudes super-
position of the contributions of loopform bundles. A
single loop of this form never represents anything else
but a neutrino,

FIG. 4. Spinning-top model. A and <N quark interlinked,
contributing to a meson, To illustrate the topological
(knot-theoretical) relationships of the two loops, space
is here subdivided by a toroidal surface [dashed lines in
Fig. 4(a) which show a doughnut cut in half]. The A is
located entirely outside this doughnut shaped surface,
the 9 entirely inside. This surface is dividing the fibrat-
ed space of A loopforms from that of 9 loopforms; this
toroidal interface may arbitrarily shrink or extend it-
self. Both loops pass through the spherical core region
which is indicated by the dashed circle; the two loops
may spin independently in a rolling-spinning motion
about both the circular and the straight axes.




Jumping forward many years:

Protons are made of quarks.

Quarks are bound by gluon field.

Glueballs are closed loops of
gluon field.

Can glueballs be knotted?!




arXiv:hep-th/0312133 v 12 Dec 2003

Are Glueballs Knotted Closed Strings?
Antti J. Niemi*

Department of Theoretical Physics, Uppsala University,
Box 805, S-75 108 Uppsala, Sweden

May 29, 2006

Abstract

Glueballs have a natural interpretation as closed strings in Yang-Mills theory.
Their stability requires that the string carries a nontrivial twist, or then it is knot-
ted. Since a twist can be either left-handed or right-handed, this implies that
the glueball spectrum must be degenerate. This degeneracy becomes consistent
with experimental observations, when we identify the 1z (1410) component of the
n(1440) pseudoscalar as a 0~ glueball, degenerate in mass with the widely ac-
cepted 07T glueball f,(1500). In addition of qualitative similarities, we find that
these two states also share quantitative similarity in terms of equal production ra-
tios, which we view as further evidence that their structures must be very similar.
We explain how our string picture of glueballs can be obtained from Yang-Mills
theory, by employing a decomposed gauge field. We also consider various experi-
mental consequences of our proposal, including the interactions between glueballs
and quarks and the possibility to employ glueballs as probes for extra dimen-
sions: The coupling of strong interactions to higher dimensions seems to imply
that absolute color confinement becomes lost.







Universal energy spectrum of tight knots and links in physics*

Roman V. Buniy’ and Thomas W. Kephart!
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA

We argue that a systems of tightly knotted, linked, or braided flux tubes will have a universal
mass-energy spectrum, since the length of fixed radius flux tubes depend only on the topology of
the configuration. We motivate the discussion with plasma physics examples, then concentrate on
the model of glueballs as knotted QCD flux tubes. Other applications will also be discussed.

Figure 2: The second shortest solitonic flux configuration is the trefoil knot 3; corresponding to the
second lightest glueball candidate f,(980).







The previous demonstration as
made by Jason Cantarella,
using his program “ridgerunner”.

http://www.math.uga.edu/~cantarel/

In the next frame we show
another Cantarella film,
contracting the knot 9_{42}.
This is the first chiral knot
that is undetected from its mirror
image by the Jones polynomial.




o [T 1]]
,,,--a..“.ﬂmﬁﬂu.-sill!\

)
»N.....,mmmm... 5
gy N7
Nay H
sQQN\ LT
10y \um
sb“hs\ el
oel/ \
49,
4
S0l
SR
\hﬂﬂ@?g@l&l[&ll \\\\\\‘
P RN P
Sy S
.\I\".l.oo 2 “““‘\\\l
SN
‘ss\\HHW\\I\\h““\\ /INIOO'OIOI v
ST NS







A topological model of composite preons

Sundance O. Bilson-Thompson*
Centre for the Subatomic Structure of Matter, Department of Physics,
University of Adelaide, Adelaide SA 5005, Australia
(Dated: October 27, 2006)

We describe a simple model, based on the preon model of Shupe and Harari, in which the binding
of preons is represented topologically. We then demonstrate a direct correspondence between this
model and much of the known phenomenology of the Standard Model. In particular we identify the
substructure of quarks, leptons and gauge bosons with elements of the braid group Bs. Importantly,
the preonic objects of this model require fewer assumed properties than in the Shupe/Harari model,
yet more emergent quantities, such as helicity, hypercharge, and so on, are found. Simple topological
processes are identified with electroweak interactions and conservation laws. The objects which play
the role of preons in this model may occur as topological structures in a more comprehensive theory,
and may themselves be viewed as composite, being formed of truly fundamental sub-components,
representing exactly two levels of substructure within quarks and leptons.
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Positron Flectron

i

Down quark Up quark




The Braided Belt Trick

The mathematics of Sundance Bilson’s
approach to elementary particles
based on the ‘braided belt trick”

shown in the next slide.

This trick is also the basis for
making braided leather belts.




Begin by cuttingtwo Holding the top flat,

slits into a strip of pull string C
leather. overstring B,
and pull string A

Be careful not to cut all

the way to the ends. overstring C.

Now pull stringA Untangle the bottom
overstring C, portion by sliding the
and pull string B bottom end through

overstringA. the openslits.

Next,

pull string B
over string A,
and pullstring C
over string B.

Continue this pattern
until the braid reaches
the bottom of the strip.




The Braided Belt Trick

=Y B
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This approach to elementary particle
physics is just beginning.
We will have to wait and see
if elementary particles are
braids and if knotted glueballs
are real.

After all,
Why Knot?




Knots and Quantum Field Theory




From Feynman’s Nobel Lecture

The character of quantum mechanics of the day was to write things in the famous
Hamiltonian way - in the form of a differential equation, which described how the wave
function changes from instant to instant, and in terms of an operator, H. If the classical
physics could be reduced to a Hamiltonian form, everything was all right. Now, least
action does not imply a Hamiltonian form if the action is a function of anything more than
positions and velocities at the same moment. If the action is of the form of the integral of
a function, (usually called the Lagrangian) of the velocities and positions at the same time

S=[L{x x)dt

then you can start with the Lagrangian and then create a Hamiltonian and work out the
quantum mechanics, more or less uniquely. But this thing (1) involves the key variables,
positions, at two different times and therefore, it was not obvious what to do to make the
quantum-mechanical analogue.

L = Kinetic Energy - Potential Energy

Classical Mechanics: Extremize Integral of L over the
paths from A to B.




So that didn't help me very much, but when I was struggling with this problem, I went to
a beer party in the Nassau Tavern in Princeton. There was a gentleman, newly arrived
from Europe (Herbert Jehle) who came and sat next to me. Europeans are much more
serious than we are in America because they think that a good place to discuss intellectual
matters is a beer party. So, he sat by me and asked, "what are you doing" and so on,
and I said, "I'm drinking beer." Then I realized that he wanted to know what work I was
doing and I told him I was struggling with this problem, and I simply turned to him and
said, "listen, do you know any way of doing quantum mechanics, starting with action -
where the action integral comes into the quantum mechanics?" "No", he said, "but Dirac
has a paper in which the Lagrangian, at least, comes into quantum mechanics. I will show
it to you tomorrow."




Next day we went to the Princeton Library, they have little rooms on the side to discuss
things, and he showed me this paper. What Dirac said was the following: There is in
guantum mechanics a very important quantity which carries the wave function from one
time to another, besides the differential equation but equivalent to it, a kind of a kernal,
which we might call K(x', x), which carries the wave function j(x) known at time ¢, to the

wave function j(x') at time, t+e Dirac points out that this function K was analogous to the
quantity in classical mechanics that you would calculate if you took the exponential of ie,

multiplied by the Lagrangian L (x,x) imagining that these two positions x,x' corresponded
t and t+e. In other words,

wLﬁzﬁﬂm

K{x’,x) is analogous to ¢

Professor Jehle showed me this, I read it, he explained it to me, and I said, "what does
he mean, they are analogous; what does that mean, analogous? What is the use of that?"
He said, "you Americans! You always want to find a use for everything!" I said, that I
thought that Dirac must mean that they were equal. "No", he explained, "he doesn't mean
they are equal." "Well", I said, "let's see what happens if we make them equal."




So I simply put them equal, taking the simplest example where the Lagrangian is 72Mx? -
V(x) but soon found I had to put a constant of proportionality A in, suitably adjusted.
When I substituted Aef€L/f for K to get

p(x', 1+€) = J..-l exp [% L (.\' —x \)] w(x, 1) dx

£

and just calculated things out by Taylor series expansion, out came the Schrodinger
equation. So, I turned to Professor Jehle, not really understanding, and said, "well, you
see Professor Dirac meant that they were proportional." Professor Jehle's eyes were
bugging out - he had taken out a little notebook and was rapidly copying it down from the
blackboard, and said, "no, no, this is an important discovery. You Americans are always
trying to find out how something can be used. That's a good way to discover things!" So,
I thought I was finding out what Dirac meant, but, as a matter of fact, had made the
discovery that what Dirac thought was analogous, was, in fact, equal. I had then, at least,
the connection between the Lagrangian and quantum mechanics, but still with wave
functions and infinitesimal times.




The Taylor expansion is

—ieV (x)
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Now use the Gaussian integrals

b, t+€) =

2 2mhet
€ h2e d’)’] — ,
o m
and
/oo 7726%@7 _ 2mhet @
o m m
This rewrites the Taylor series as follows.
2mhel
m V() fiei 0% )
Y(z,t+€) = a1 ¢ [¢($at)+%w + O(a7)].
Taking
2mhet
Ale) = :
() =/
we get

hie

Y(x,t) + eo(x,t) /0t = P(x,t) — %V(SB)@U(%J) + %82@0/8:02.

Hence (x,t) satisfies the Schridinger equation.
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Witten’s Integral

In [49] Edward Witten proposed a formulation of a class of 3-manifold in-
variants as generalized Feynman integrals taking the form Z(M) where

Z(M) = /DAe(ik:/Zhr)S(M,A).

Here M denotes a 3-manifold without boundary and A is a gauge field (also
called a gauge potential or gauge connection) defined on M. The gauge field
is a one-form on a trivial G-bundle over M with values in a representation of
the Lie algebra of GG. The group G corresponding to this Lie algebra is said
to be the gauge group. In this integral the action S(M, A) is taken to be
the integral over M of the trace of the Chern-Simons three-form A A dA +
(2/3)ANANA. (The product is the wedge product of differential forms.)




With the help of the Wilson loop functional on knots and links, Witten
writes down a functional integral for link invariants in a 3-manifold M:

Z(M,K) = / D AcUH/AmSMA) . pefic A)

= /DAe(““/‘l”)S < K|A>.

A(z) = A% (x)Tdxy,

The gauge field is a Lie-algebra valued
one-form on 3-space.

The next slide discusses the nature of the
Wilson Loop.
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Think of a vector on the knot.As the base of the vector
moves by dx the vector changes to (I + A)v. This is
the analog of parallel translation. The gauge field is a
connection!
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This diagram defines a symbol for dx .

It shows the formula for differentiating a Wilson loop.




= Sijk = 0/0 Ag(x)

z = curvature tensor

Chern - Simons Lagrangian




Curvature is
dA + AMA.

The Chern-Simons Lagrangian is
L = AAdA + (2/3)ANANA.

Differentiating L with respect to A
yields curvature.
(But you have to do it in detail to really see this.)
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By an interesting calculation,
one finds that if you change the loop by a small amount,
then the Wilson loop changes by an insertion of
Lie algebra coupled with the curvature tensor.

This is just like classical differential geometry
where parallel translation around a small loop
measures curvature.




Curvature enters in when one evaluates the varying
Wilson loop.




We can put all these facts together
and find out how Witten’s Integral
behaves when we vary the loop.

The next slide tells this story
in Diagrams.




e
s s,

Wg 0,

ki@

)
(wk)ge Q’J,,Wr@-»




dZ = (1/k)ge kzjl,w-r_(»l»

When you vary the loop,
Witten’s integral changes by
the appearance of the volume form

£

and a double Lie algebra insertion.




There will be no change if the the
volume form is zero.
This can happen if the loop deformation
does not create volume.
That is the case for the
second and third Reidemeister moves
since they are “planar”.

Hence we have shown (heuristically) that
L is an invariant of “regular isotopy”
just like the bracket polynomial.
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This is what happens when you
switch crossings.
You get a “‘skein relation”
involving Lie algebra insertions.

This formula leads directly to the subject of Vassiliev
invariants, but we will not discuss that in this talk.
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The Loop Transform: Start with a function defined on
gauge fields. Integrate it against a Wilson loop
and get a function defined on knots.
Transform differential operations from
the category of functions on gauge fields to
the category of functions on knots.
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This differential operator occurs in the loop

quantum gravity theory of Ashtekar, Rovelli
and Smolin.

Its transform is the geometric variation of the loop!




The loop transform enabled
Ashtekar, Rovelli and Smolin to

see that the exponentiated

Chern-Simons Lagrangian could be seen
as a state of quantum gravity
and

that knots are fundamental

to this approach to a theory of
quantum gravity.




Knots, Links and Lie Algebras
Vassiliev Invariants
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Chord Diagram




Four-Term Relation From Topology
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Four Term Relation from Lie Algebra
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FIGURE 12. Calculating Lie Algebra Weights.




The Jacobi Identity

a b a b
b cC
RN
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(aeb)ec - (aec)eb = ae(bec)
Hence
(aeb)eC + be(aec) = ae(bec).




Lie algebras and Knots are linked
through the Jacobi ldentity.

This is part of a mysterious
connection
whose roots we do not yet fully
understand.







